

New μ-CHP network technologies for energy efficient and sustainable districts

Development of an SOFC based μ-CHP system in the framework of the European project FC-DISTRICT

I. Frenzel, A. Loukou and D. Trimis TU Bergakademie Freiberg, Institute of Thermal Engineering, Freiberg, Germany

4. Sächsischer Brennstoffzellentag, Leipzig/Germany – 10th November 2011

Project FC-DISTRICT FC-DISTRICT Consortium \succ μ -CHP System Layout Major System Components SOFC Stack CPOX Reformer Anode Off-gas Burner Heat Exchangers > Inverter Future Activities

CPOX based SOFC $\mu\text{-}CHP$ unit

PROJECT FC-DISTRICT I

FC-DISTRICT Key Information

- Within the 7th framework program of the European Commission
- Cooperation of 22 partners from 11 European countries
- Duration: 4 years (started: Sept. 2010)
- ➤ Total budget: 11 836 264. 6 €
- ➤ Total funding: 8 000 000 €

Overall objective:

Optimization and implementation of an innovative energy production and distribution concept for sustainable and energy efficient refurbished or new "energy autonomous" districts, exploiting decentralized co-generation coupled with optimized building and district heat storage and distribution network.

PROJECT FC-DISTRICT II

- New concept for refurbished and new energy efficient districts
 - μ-CHP systems (SOFC based) for energy production
 - Distribution system for electricity and heat
- Electrical integration using the Virtual Power Plant (VPP)
 - + Intelligent heat network at district level
- Study about the use of gaseous bio-fuels originating from food waste
- Development and demonstration of new district management business models and service models for the consumer

Demonstration

- at different sites (Spain, Greece, Poland) and
- in three phases: unit, building, district

FC-DISTRICT CONSORTIUM I

Isabel Frenzel

4. Sächsischer Brennstoffzellentag, Leipzig/Germany – 10th November 2011

μ-CHP SYSTEM DEVELOPMENT TEAM I

W TECHNISCHE W TECHNISCHE UNIVERSITÄT M FEIBE	 Leader of R&D activities for micro-CHP unit Development and adaptation of peripheral components (reformer, burner) Manufacturing and integration of first two micro-CHP SOFC based units
EBZ	 SME with expertise in the development of SOFC based systems Close collaboration with stack supplier Development and adaptation of peripheral components (e.g. heat exchangers) Testing and verification of first lab prototype Manufacturing and installation of field test prototypes
ikerlan ik4 research alerce	 Technology research center Development of optimized control and power electronics Development, integration and testing of control and wireless communications Installation of first system prototype

μ-CHP SYSTEM DEVELOPMENT TEAM II

ECN Desigleanderseek Centrum Roderland	 Largest Dutch R&D institute in the field of energy Process simulations (ASPEN) Safety Analysis Certification
FAGOR 🤿	One of the largest European household appliance manufacturer Assembly and test demonstration unit in Spain Interfaces for unit/district integration
IJ	 Largest school of engineering in Portugal Heat management simulation under transient operational modes Numerical simulation for design optimization of anode off-gas burner, CPOX reformer and plate type heat exchangers
The second secon	 Scientific project coordinator Evaluation of alternative and biofuel use in SOFCs Simulations for CPOX of biogas fuels Coordination and montitoring in Greek demonstration site

μ -CHP SYSTEM LAYOUT

Gas appliance for single-family homes and district heating environments for providing demand-flexible electricity and heat

- SOFC stack from the German company STAXERA:
 - nominal max. electrical output 1.5 kW_{el}
 - nominal max. thermal output 2.75 kW_{th} on CPOX syngas
- Electrical efficiency > 30%
- Overall efficiency > 85% (targeting 90%)
- Modulation 1:3
- CPOX reforming of natural gas (biogas)
- Inter-connection with a district heat distribution system and an electrical micro-grid

Staxera 1.5 kW ISM

- STAXERA Integrated Stack Module (ISM) with ESC4 cells
- Current technology: 1.7 kW_{el} module (H₂ (40%) N₂ (60%))
 1.5 kW_{el} with CPOX reformate
- 60 cells MK200, active area 127.8 cm²
- Fuel utilization up to 85%

Decision criteria

- Very robust stack
- Redox stability
- >10.000 operation hours, <0.5% / 1000 h degradation</p>
- 150 thermal cycles without power loss proven
- Very low pressure losses due to open cathode
- Stack hotbox → easier integration

STAXERA MK200 Stacks

Upscaling 1.7 kW \rightarrow 5 kW

Isabel Frenzel

- Development of CPOX reformer by TUBAF/EBZ
- Operation with different qualities of natural gas and potentially biogas
- Load in the range of 1.0 kW to 4.8 kW
 - (equivalent enthalpy input in the case of methane)
- GHSV values in the range of 15,000 h⁻¹ to 100 000 h⁻¹
- Air ratios in the range of 0.24 to 0.36
- Initial preheating temperatures in the range of 20°C to 450°C
- Experimental characterization of ceramic monolith with noble metal based catalyst (D=37 mm, L=20 mm)

CPOX REFORMER II

- Reformer operation with methane (Pth=4 kW) showed:
 - Maximum reformer efficiency of 83% for an air ratio of 0.34.
 - Maximum selectivities of 88% for air ratios < 0.31.
- For application in the μ-CHP unit an air ratio of 0.31 was chosen as compromise between performance and safety distance to overheating conditions

- Gas sample analysis with the SMPS (Scanning Mobility Particle Sizer) showed no soot particles in the syngas for operation with methane and λ=0.24-0.42.
- No soot accumulation was observed within the catalyst for a few hours of operation with pure methane and gas mixture of 87% methane/13% propane
- On-going experimental characterization of the reformer for operation with simulated biogas

Isabel Frenzel 4. Sächsischer Brennstoffzellentag, Leipzig/Germany – 10th November 2011

- Parametric numerical studies for reformer design and performance optimization by IST
 - Development of an 1D model with homogeneous and heterogeneous chemistry (*on the basis of CHEMKIN*) for catalytic partial oxidation of methane in a monolith single-channel geometry for prediction of heat release and species.
 - 3D flow simulation of the complete reformer geometry, using the results of the 1D chemistry simulations with software package STAR-CCM+.

 Evaluation of reaction schemes suitable for biogas reforming under POX conditions by NTUA.

ANODE OFF-GAS BURNER I

Direct combustion of the anode off-gas (stationary operation or load rejection/startup) with the cathode exhaust for system simplification (no additional blower, control simplification etc.)

→ Challenging operating conditions

		anode off-gas			reformate	
electical stack power [kW]		1.5	1.5	0.5	0.5	0.5 - 1.5
stack fuel utilization [%]		70	80	75	85	-
operation mode		steady-state operation			start-up/shut-down	
temperature [°C]		780°C			Ambient-830°C	
gas composition	x _{H2} [Vol%]	10.7	7.2	8.9	5.4	34.3
	x _{co} [Vol%]	4.7	3.1	3.9	2.3	16.7
	x _{co2} [Vol%]	13.9	15.5	14.7	16.3	1.8
	x _{N2} [Vol%]	42.8	42.8	42.8	42.8	42.8
	х _{н20} [Vol%]	27.4	31.0	29.2	32.7	3.8
LHV [kJ/Nm ³]		1748	1168	1452	873	5808

- Cathode air flow ranging from 22 ... 240 NI/min, 830°C
- Stable conversion of gas mixtures with significantly different compositions and caloric values

Isabel Frenzel

Low pressure drop

ANODE OFF-GAS BURNER II

- Development of diffusion type burner for direct combustion of the anode off-gas with the cathode exhaust
- Conversion of anode off-gas during steady state operation and reformate during start-up/ shut-down
 - →Two combustion chambers/stages:
 - 1st chamber: complete conversion

 of anode off-gas, partial conversion
 of reformate
 - 2nd chamber: complete conversion in the case of reformate
- → Proper cathode air splitting is essential for stable operation

ANODE OFF-GAS BURNER III

Isabel Frenzel

ANODE OFF-GAS BURNER IV

- Maximum gas temperatures during operation with anode off-gas at 1100°C.
- For partial load operation with reformate (relevant case for reformate operation) gas temperatures do not exceed 1400°C.
 - → preliminary tests with reformate indicated that there is no degradation of the material
- Full load with reformate shows critical gas phase temperatures (1600°C) but this operational mode is not foreseen and could only take place under malfunction of the complete system.
- Pressure drop for cathode air side does not exceed 3 mbar.
- Pressure drop for fuel side does not exceed 0.5 mbar.

ANODE OFF-GAS BURNER V

Operation with anode off-gas/ Stationary mode for the complete SOFC system

Stack Loads [kW]	Burner load [kW]	Total air ratio (λ)	CO [mg/kWh]	NOx [mg/kWh]
1,5	1,0-0,6	13-24	50	0
0,75	0,4-0,2	10-21	10	0
0,5	0,2-0,1	4-11	10	0

- Complete conversion of major species is achieved.
- Emitted CO concentrations are on the level of the accuracy limits of gas analyzers (measured value <10 ppm).
- The CO emissions comply with the DIN EN 50465 (CO < 1000ppm @ 0% O₂).
- The CO emissions comply also with the Blue Angel Standard (RAL-ZU 61) which requires CO < 50 mg/kWh (calculated on the basis of the CH₄ input to the μ-CHP system.

Isabel Frenzel

ANODE OFF-GAS BURNER VI

Operation with reformate/ Transient modes (start-up/ load rejection) for the complete SOFC system

Stack Loads [kW]	Burner load [kW]	Total air ratio (λ)	CO [mg/kWh]	NOx [mg/kWh]
1,5	3,5-3,1	5-6	0	210
0,75	1,5-1,4	3-5	0	205
0,5	1,0-0,8	2-2,5	0	200

- Major species are converted and safe burner operation is achieved.
- The high NOx emissions are not critical, since they are only present for short time at low load during start-up or load rejection. Characterization applies for all stationary operation modes.
- The NOx emissions could be further reduced and this is expected for the next improved prototype of the component which is going to be tested.

HEAT EXCHANGERS

Cathode air preheater

- Plate type heat exchanger
- Development by EBZ

CPOX air preheater

Plate type heat exchanger

Development by EBZ

- Pressure loss target < 10 mbar</p>
- Electrical preheater for system start

4. Sächsischer Brennstoffzellentag, Leipzig/Germany – 10th November 2011

- Development by IKERLAN for efficient operation at low voltages and high currents
- Targeted efficiency: 94 %
- Voltage level: 35 ... 72 V
- Nominal voltage: 42 V
- Electrical current: 0 ... 35 A
- Connection to control and safety system

- The 1st prototype complete system is going to be ready for laboratory operation in February 2012.
- The μ-CHP unit will go through CE certification, performed by a certifying body within 2012.
- Field testing of two μ-CHP units will be performed in 2012/2013: one unit is going to be tested in demo site in Spain and another one in demo site in Greece.
- The overall project concept will be evaluated in 2013/2014 with large-scale demonstration of all the targeted technical developments combined in district level (demo site in Poland); three micro-CHP systems will be installed for this purpose.

THANK YOU FOR YOUR ATTENTION!

The FC-DISTRICT Consortium would like to acknowledge the financial support of the European Commission under the Seventh Framework Program.

Isabel Frenzel

4. Sächsischer Brennstoffzellentag, Leipzig/Germany – 10th November 2011