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OBJECTIVES

Main Objectives:

• To introduce an innovative energy production and distribution concept

for sustainable and energy efficient refurbished and/or new districts.

• To estimate the associated primary energy savings.



ENERGY SYSTEMS & TECHNOLOGIES

Service Provider

Building Distribution Consumption

Energy 
Production

Envelop/Wall 
Characteristics

District 
Heating

Micro-grid
Building 
Topology

Building storage:

Consumer 
Needs

DwellingElectricity:
- Central grid
- RES (e.g. PV and wind)

Decentralized µ-CHP:
- Fuel cells
-Micro gas turbines
- IC engines
- Stirling engines

Heating/Cooling:
- Heat pumps 
-Absorption chillers
- Boilers
- RES (e.g. solar, 
geothermal,  biomass)

Building storage:
- PCM
- Radiant walls

Central heat buffer 
(Hub)

Insulation & Glazing:
- Conventional (e.g. 
rockwool, fibreglass)
-Advanced (e.g. 
aerogels, microcellular, 
nanoinsulation
- Glazes (e.g. low e-
coating, thermochromic 
materials)

Distributed storage

Advanced pipe 
network

-Intelligent control
-Nano-insulation 
materials

- Dwelling
- Office 
- School
- Hospital, etc 

- Economy
- Ecology 
- Sustainability

BEMS



DECENTRALIZED CHP

• Savings in losses over the long transmission and distribution lines.

• Enhanced energy efficiency.

• Reduced pollutant emissions.

• Lower installation cost.

• Locally produced (bio-) fuels utilization.

• Local voltage regulation.• Local voltage regulation.

• Ability to add a small unit instead of a larger

one during peak load conditions.



MICRO-CHP TECHNOLOGIES

 µ-CHP System 
SOFC Stirling engine I.C. Engine Micro-turbine 

Manufacturer (Literature data) Stirling Systems Senertec Capstone 
CHP
elη  (%) 25% 35% 20% 27% 26% 

 CHP
thη  (%) 65% 55% 70% 61% 59% 

Power to Heat Ratio (PHR) 0.38 0.64 0.29 0.44 0.44 
Nominal thermal output 

 

Nominal thermal output 
CHP
thQ&  (kWth) 

5.2 3.1 4.67 12.4 67.8 

Nominal electric output 
 CHP

elW&  (kWel) 
2.0 1.33 5.5 30.0 



• Solid-oxide fuel cells have the potential of very high efficiencies at

relatively high operating temperatures (650 – 1000 ºC).

• SOFCs can be used both for direct electricity generation and combined

heat and power applications.

• SOFCs are fuel flexible and can operate on hydrocarbon or reformed-

hydrocarbon fuels.

THE SOFC SYSTEM

Domestic applications: micro-CHP
(electricity for lights and appliances, heat

CHP250 SOFC Power System for 
Ontario Power Generation (2292 
cells, 225 kWe @ efficiency > 45%, 
250 kWe max)

(electricity for lights and appliances, heat
for central heating and hot water)



SOFC BASED MICRO-CHP

• High operating temperatures

• Versatile CPOX fuel processor for

reforming of Natural gas (or Biogas)

•High efficiency in partial load

conditions

• Suitable power heat ratio

• Tri-genaration capabilities• Tri-genaration capabilities



THERMAL AND ELECTRICAL STORAGE

• Load balance

Thermal

Electrical

Building: Building elements (PCMs)

Districts: “Smart” thermal netwroks

Buildings: µ-grid, flywheels, battaries

Districts: smart-grid (ESCO)

• Surplus energy storage for future use

Thermal Electrical
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exchange
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District: 
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INTEGRATION
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INTEGRATION



THERMAL AND ELECTRICAL INTEGRATION

• Advanced pipe insulating materials 

featuring «aerogels».

• Thermal losses minimization.

• Central heat buffer system.

• “thermally driven” or “electrically 

driven” operation.

• Advanced control models and 

operating strategies.

• Virtual Power Plant configuration

• Overall district’s needs and goal. 



CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (1)  

Energy Demand

• Domestic hourly heat and power load profiles from literature (Peacock 

and Newborough, 2006)

• Typical winter and summer days 
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Energy Supply – Standard Case

• Separate heat and electricity production for n dwellings 

• Wel (kW): Electricity demand – Qth (kW): Heat demand

• APEDS: Annual Primary Energy Demand for Standard Case

CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (2)  
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Energy Supply – Micro-CHP case

• Independent, self sufficient heat network of n dwellings 

• Micro-CHP: SOFC units with ηCHP=90%, ηel=25-35% , WelCHP=2-2.8 kW

• Central heat buffer: Less FC units needed, more working time for each

• APEDCHP: Annual Primary Energy Demand for the integrated District Case

• Same energy demand with 

CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (3)  
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Operation of microCHP “swarm” 

• Annual load: 6 months winter, 6 months summer.

• Number of FC microCHP units : Covering @ steady full capacity the annual 

thermal ENERGY load of n dwellings

CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (4)  
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Results  

• APEDS = 50.16 MWh (NG energy) per dwelling

• APES = (APEDS – APEDCHP)/APEDS : Annual Primary Energy Saving

• WPES: Winter PES, SPES: Summer PES

Parameters: # of dwellings connected, ηel of FC
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CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (5)  
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CASE STUDY - ANNUAL PRIMARY ENERGY SAVING (6)  

Annual Primary Energy Demand reduction and CO2 Savings
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• Energy savings up to 55%.

• 3,5 GWh reduced consumption (assumed 100 dwellings).

• Maximum reduction of CO2 emissions: 550 tn/y



CONCLUSIONS

• Concept applicability: new or refurbished “districts” featuring

“complementary” load profiles.

• The PHR of µ-CHP SOFC systems makes them ideal for

domestic applications.

• An optimized control system is a prerequisite for heat load

balancing within district boundaries.

• Key elements for concept implementation: low energy buildings

(insulation), improved low temperature district heating pipe(insulation), improved low temperature district heating pipe

network (insulation, diameter, temp. levels), local and/or central

heat buffer, real time control strategies.

• Advanced operational and business models allow the interaction

between consumers and ESCOs

• Building and energy system integration results in higher overall

efficiency.

• Primary energy savings of the order of 55 %.



THE FC-DISTRICT PROJECT



Thank you for your attention!

The work has been performed in the framework of 

the EU founded FC-DISTRICT project: New µ-CHP 

network Technologies  for energy efficient and 

sustainable districts (Grand No. 260105).



Specification of SOFC based co-generation system

General
Gas appliance for single-family homes and district heating 
environments for providing demand-flexible electricity and heat

Fuel input Natural gas (H-gas and L-gas), biogas

Nom. max 
1.5 kW / 2.75 kW at 30% net electrical efficiency

SOFC BASED MICRO-CHP

Nom. max 
capacity

1.5 kWel / 2.75 kWth at 30% net electrical efficiency

Modulation 1:2

Emissions NOx < 60 mg/kWh, CO < 50 mg/kWh at 0% O2 (Blue Angel)

Dimensions L x W x H: 1000 x 800 x 1800 mm³

EBZ GmbH  Fuel Cells
Phone: +49(0)351/47939-16 Postal: Marschnerstrasse 26, 01307 Dresden, Germany

Fax: +49(0)351/47939-18 Visitors: Seifhennersdorfer Straße 16, 01099 Dresden, Germany

Email: sales@ebz-dresden.de Web: www.ebz-fc.de



CASE STUDY – RESULTS SUMMARY

 m-CHP systems 
Standard Case 

SOFC 
Stirling 
engine 

I.C. 
engine 

Micro-
turbine 

 
CHP
elη  

    
25% 35% 

PEDCHP_w  
MWhNG/ 
(winter or 
summer) 

4838.4 5697.7 4393.1 5181.2 5460.8 
PEDSC_el 1606.5 

PEDCHP_s  345.6 389.6 316.8 351.3 496.4 
PEDG_w  2218.5 4248.9 1440.3 2699.1 2758.5 

PEDSC_th 3409.4 PEDG_s  -585.0 -455.4 -642.6 -563.4 -477 
APED MWhNG/ 

year 
3550.5 2293.8 4012.2 3396.7 3675.7 5015.9 

Annual 

• Energy savings of the order of 55%.

• 3,5 GWh reduced consumption (assumed 100 dwellings).

• Reduce in CO2 emissions: 550 tn/y

 

Annual 
reduction 
potential 

% 29.2% 54.3% 20.0% 32.3% 26.7% - 

Annual CO2 
emissions 

Tonnes 
CO2/year 

720.8 465.6 814.5 689.5 746.2 1018.2 

Annual CO2 
emissions 
reduction 

297.4 552.6 203.7 328.7 272.0 - 


